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Binary Logic is Rich Enough 
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Given a finite ortholattice L, the *-semigroup is explicitly built whose annihilator 
ortholattice is isomorphic to L. Thus, it is shown that any finite quantum logic 
is the additive part of a binary logic. Some areas of possible applications are 
outlined. 

INTRODUCTION 

Binary logic has been introduced as the underlying structure for quan- 
tum logics. Within this approach a physical object is associated with a semi- 
group. Each element of this semigroup, called generating, is understood as 
a conceivable elementary coercion performed upon the object (Zapatrin, 
1989). A collection of elementary coercions is outlined, called the absurd 
subset, whose elements are understood as unperformable (under given 
obstacles). The mathematical structure describing binary logics is the linear 
logic (Girard, 1987) which operates with certain subsets of the semigroup, 
called facts, and possesses logical operations of two kinds: multiplicative 
and additive ones. While the multiplicative logic is the special feature, the 
additive part of binary logic is a usual ortholattice, which can be considered 
as a quantum logic in its conventional sense. The traditional quantum logic 
has a drawback which is eliminated within the binary logic approach. When 
an object is identified with the collection of all its observed properties (as is 
done in quantum logic) the problem of identification of the same object in 
different obstacles (when different sets of observation means are in disposal) 
arises. Using the binary logic approach, the semigroup itself stays 
unchanged, while the variations of obstacles are described by variations of 
the absurd subset. In other words, the quantum logical observer says, "The 
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object is all that I could see!," while the binary logic observer asserts, "The 
object is all that I could do!." In this paper I show that the binary logic 
approach is rich enough. Namely, for any given ortholattice L the semigroup 
is explicitly built which may be the generating semigroup of a binary logic 
in such a way that the additive part of this binary logic is the ortholattice 
isomorphic to L. To do this, some tools to work with lattices are described. 

In fact, dealing with lattices often needs some representation theorem. 
The most natural way to describe a lattice is to represent it as a lattice of 
sets. There are appropriate theorems for Boolean algebras (Stone theorem) 
and orthomodular lattices (Foulis, 1960). In this paper the means are sug- 
gested to "drag out" the underlying structure of finite ortholattices. 

The first tool I propose is to represent a complete ortholattice L as the 
collection of closed subsets of a set V equipped with orthogonality relation 
• [Section 1 and Zapatrin (1990a,b)]. 

The second tool is the representation of L as the annihilator ortholattice 
of a *-semigroup. In this paper I explicitly describe the construction of this 
generating *-semigroup by given ortholattice L. The construction is based 
on the two following ideas. The first one [which belongs to Foulis (1960)] 
is to consider the *-semigroup S(L) of hemimorphisms of L admitting conju- 
gation. The second one is to represent these hemimorphisms by binary rela- 
tions on V. 

1. POLARITIES AND TOPOLOGIES 

The well-known source of complete lattices and ortholattices is the 
polarity construction (Birkhoff, 1967): let X, Y be two sets and O be a 
binary relation between X and Y: 

Oc_Xx Y 

The right polar (left polar) to a subset A ~_X (BE Y) is the subset of Y 
(of X) defined as follows: 

AR={y~ YIVa~A aOy} 
LB= {xeXIVbsB xOb} 

(1.1) 

It is known that the collections R of right polars and L of left polars 
form the pair of anti-isomorphic complete ortholattices. The anti-isomorph- 
ism is realized by the pair of mappings (1.1) ( . )R:L-- .  R and L(. ):R---, L 
(Birkhoff, 1967). 

The special case when X = Y= V and the relation, denote it • is sym- 
metric and irreflexive is very important. In this case • will be called the 
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orthogonality relation on V and for any subset A ~ V its left and right polars 
do coincide: 

L A _-AR=A i 

Therefore the lattices R and L are isomorphic: 

R = L = F ~ ( V ) = F  

and the anti-isomorphism between R and L becomes the orthocomplementa- 
tion on F: 

( . ) i :  F ~ F  

So, let a set V be equipped with a symmetric (x i y implies y I x), irreflexive 
(if x i x ,  then x i y  for any y~ V) relation called orthogonality. It will be 
assumed in the sequel that there is not more than one element 0~ V such 
that 0 • y for any y s V. The closure operation is defined for any A ___ V as 

Cl A :=A •  

and possesses the following properties: for any A, Be  V: 

C1. A ~ C I A .  
C2. Cl C1 A = CI A. 
C3. A _~ B implies Cl A _~ Cl B. 

So, F is the set of all dosed (A = C! A) subsets. 
A subset of  V is called open if it is the set-theoretic complement in V 

of a closed subset. The interior Int A of  a subset A ___ V can be defined as the 
greatest open set contained in A. The interior operator Int possesses the 
following properties: for any A, B_~ V: 

I1. Int A_cA. 
I2. Int Int A = Int A. 
I3. A ~ B implies Int A _~ Int B. 

The collection of  open sets can be considered as defining something like 
a topology on V. However, this is not the topology in a rigorous conventional 
sense, since the union of two closed sets (or intersection of  two open ones) 
may not be closed (open). 

Let (L, ') be a complete ortholattice and V be its V-generating subset. 
V can be equipped with the orthogonality relation inherited from L: 

x i y i f a n d o n l y i f  x < y' 
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Though, as shown in Zapatrin (1990a,b), the ortholattices L and F are 
isomorphic. Therefore in the sequel I shall consider ortholattices already 
represented as collections of closed sets. 

2. A N N I H I L A T O R S  IN S E M I G R O U P S  

Let A be a semigroup with zero 0. Consider a binary relation O on A 
defined for any a, beA as 

aOb if and only if ab=O 

The relation O is in general neither symmetric nor irreflexive, but it can be 
considered as a binary relation between two sets A R and LA both isomorphic 
to A, and apply the polarity construction. Let Q_A. The right and left 
annihilators of Q are the sets 

QR= {xeA[VqeQ qx=0} 

LQ= {yeAlVqeQ yq=0} 

Evidently any left (right) annihilator is a left (right) ideal of A. The closures 
of a subset Q~_A relative to the lattices L and R will be denoted by (QI and 
[Q), respectively: 

(QI:=t~(QR)eL, IQ):=(LQ)ReR 

Now let A be a *-semigroup, i.e., there is an involution ( . )* :A ~ A such 
that t** = t and (ts)* = s't* for any s, teA. While the polarity construction 
yields the anti-isomorphism between L and R, the involution establishes the 
isomorphism of L and R, namely: 

(<Q[)* = LQ*>, (]Q>)* = <Q*I (2.1) 

So, both isomorphic lattices L and R are endowed with the ortho- 
complementation: 

(QI==L(LQ*))eL and IQ)• (2.2) 

Now the annihilator ortholattice N(A) ofa  *-semigroup A can be defined 
as the ortholattice isomorphic to both R and L with the orthocomplementa- 
tion (2.2). Note that while the ortholattices R and L are isomorphic, they 
do not coincide as in the case of symmetric orthogonality. 
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3. GENERATING *-SEMIGROUPS 

Let (L, ') be a complete ortholattice. A mapping ~:L--, L (x~--~xfb) is 
called monotone if it preserves partial order in L: 

a<b implies aO<b~ 

All the monotone mappings ~b: L ~ L form the semigroup with zero (under 
composition); denote it M(L). A monotone mapping ~b is called a hemi- 
morphism of L if it preserves joins in L: 

(x v y)c~= xd? v yc~ 

All the hemimorphisms of L evidently form a subsemigroup of M(L); denote 
it E(L). Two mappings ~b, v~E(L) are called conjugated if the following 
inequalities hold for any x~L: 

(x~)'~,_<x', x(~,)'(~<_x' 

It was proved by Foulis (1960) that if ~b is conjugated with both Z and V, 
then Z = V t. So, if ~b admits conjugation, the conjugated mapping is unique; 
denote it ~b +. Besides that, if a mapping cp admits conjugation, then both ~b 
and ~b + preserve joins in L; hence they are hemimorphisms: ~b, ~+~E(L). It 
follows immediately from (3.1) that q~++= ~b and (~pV) += v+~b +. Thus, all 
the hemimorphisms of L admitting conjugation form the semigroup with 
involution. 

The generating semigroup S(L) (or simply S, when no ambiguity occurs) 
of an ortholattice (L, ') is the *-semigroup of all hemimorphisms of L admit- 
ting conjugation. 

The *-semigroup S(L) is called generating for L in virtue of the follow- 
ing theorem: The annihilator ortholattice N(S(L)) is isomorphic to the ortho- 
lattice L. The proof of the theorem consists of three stages: 

1. Prove that any annihilator is the closure of an element of S= S(L). 
Namely, for any Q~_S there exists such p~L that (Q[ = (Op[, where Op and 
its conjugate 0~- are defined as follows: 

XOp=Ip, x#O X0~_={O, x<_p' 
t0, x = 0  /, otherwise 

where I is the greatest element of L. 
2. Build the pair of mappings F: L---, N(S) and G: N(S) ~ L. For any 

p6L, Q6N(S), 

F(p):=(Opl={~]Ic~<p}EN(S), G(Q)::- V {I~[(a~Q}~L 

3. Prove that the pair F, G do realize the isomorphism between L 
and N(S). 
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So, any complete ortholattice L is isomorphic to the annihilator ortho- 
lattice of the *-semigroup S(L) of all its hemimorphisms admitting 
conjugation. 

4. CLOSURES ON THE SEMIGROUP OF RELATIONS 

Let V be a set and ~ be a semigroup of all binary relations on V with 
the product defined for any T, $ 6 ~  as 

iff ~zeV such that xTz and zSy xTSy 

and the transposition 

xT*y if and only if yTx 

The unit element 1 of the semigroup ~ is the equality relation. Moreover, 
since N is the collection of sets, the set-theoretic operations are defined for 
elements of N: 

T u S e ~ ,  ~- n 5~e~  

:r= (v• V ) \ T ~  

When the set V is endowed with an orthogonality • two more operations 
can be defined on ~ :  

A~ ~ :=t 'A (4.1) 

where P =  J_ = {(x, y)l-q (x • is the relation of nonorthogonality. The 
partial order on V inherited from L in terms of the defined operations looks 
like 

<_ = p s  = o •  =o01, > = •  •  lOO 

where 1 is the equality relation on ~ .  The operation A ~-~A ~176 on elements of 
satisfies the conditions C1-C3 (Section 1) ; hence it is a closure on ~ .  The 

following fact is essential: a relation A ~ ~ is ~176 if and only if for any 
x e V the set { y]xAy} is the closed subset of (V, s  

A = A  ~176 iff Vx {ylxAy)~F• 

In the sequel, the monotone closure operator M CI A will be used: 

m C1A = (•176176176 (4.2) 

It can be proved that M C1 is the closure of ~ and that M-closed relations 
are monotone on V; 

A=MC1A iff Vx, yeV  x<_y implies {z]xAz}c_{z]yAz} 
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The collection ~g of all M-closed relations on N is the semigroup which is not 
a subsemigroup of N, since, in general, the N-product AB of two elements of 

may not be an element of Jg. The semigroup product of Jr defined in 
the standard way: 

A �9 B:=M CI(AB) = (AB) ~176 

The defined product operation is associative since .//4 is embedded to the 
semigroup M(L), as it will be shown in the next section. 

5. REPRESENTATION OF GENERATING SEMIGROUPS 

As was mentioned in the Section 3, the elements of generating semigroup 
for the ortholattice L are hemimorphisms admitting conjugation. Let V be 
the V-generating subset of L. Any mapping ~b: L --, L generates the binary 
relation R,  on V defined as follows: 

xRoy iff y<_xd? (5.1) 

Conversely, given a binary relation R on V, the mapping ~bR: V ~  L can be 
defined as 

x~R=V{ylxRy} 

which is extended to the mapping ~bR: L -~ L: 

ac~R=V{xr~RIx~V and x<_a} (5.2) 

Evidently, the mapping (5.2) is always monotone. Now let R~N be an 
arbitrary binary relation on V, and ~bR be the monotone mapping (5.2) 
associated with R. Consider the relation (5.1) associated with the mapping 
q~R. In terms of operations on N, this relation is the monotone closure of 
the initial relation R: 

R~R = ( l~  ~176 = M C1 R 

Besides that, if a mapping ~b is the hemimorphism, the mapping ~bR associated 
with the relation R = Ro is equal to ~b. So, the mapping ~b ~ ~bR establishes 
the injective mapping E(L) ~ M, which is also the semigroup monomorph- 
ism. The conservation of the product is proved using the fact that x~b~ = 
V{y~ lyex~}. The generating semigroup S(F) is a subsemigroup of E(F). 
Denote the image of S(F) under the mapping (5.1) by ~ .  ~ is a subsemi- 
group of ~ .  In terms of relations on V, the conjugation is described as 
follows. If (o~S(L) and ~,= ~b +, then 

0 _  o, (5.3) R ~ - R ~  
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where (.)o is the operation (4.1). [The proof uses the inequalities (3.1) in 
the form x e ((xr ~t)' reformulated in terms of relations.] Consequently, the 
condition for a relation R to be an element of 5 ~ is 

ReSZ iff ~e~r and ~ ' * e ~ /  

Now define the operation ( . )  + : J4 ~ s / /as  

R + := (•176176176 

The defined operation T~--~ T + is not yet a conjugation in ~/, since T ++ _~ T 
in general. However, the operator Int T:= T ++ possesses the properties I1- 
I3 (Section 1). Thus, due to (5.3) the elements of 5 p are ++-open elements 
of sg, while the elements of J / a r e ,  in turn, Jl-closed (4.2) binary relations 
on V. This completes the description of 5z: The elements of  the generating 
semigroup 5Z are ++-open ~l-closed relations on the V-generating set V. 

6. SUMMARY AND CONCLUDING REMARKS 

Given a complete ortholattice (L, '), it is associated with the collection 
of closed subsets of the set V with the orthogonality 1. 

This collection F• is isomorphic to (L, ') and always exists, as was 
treated in Zapatrin (1990b). The generating semigroup for the ortholattice 
(L, ') is a *-semigroup whose annihilator ortholattice is isomorphic to (L, '). 
As was shown in this paper, such *-semigroups do always exist and can be 
isomorphicaUy represented as the semigroup ~ whose elements are binary 
relations on the set V. The main result of the paper is the obtained represen- 
tation of the semigroup ~ .  The elements of ~ are obtained twice applying 
the closure construction to the set ~ of all binary relation on V. In turn, 
this semigroup 9~ can be considered as the generating semigroup of a binary 
logic (Zapatrin, 1989). In this case the initial lattice L will be (isomorphic 
to) the additive logic of the generating semigroup (~ ,  {' } ). 

I see the following areas of possible applications of the tools proposed: 

1. This description is more compact and brings more information about 
the structure of the ortholattice than, for example, traditional Hasse 
diagrams. 

2. A measure defined on an ortholattice can be represented as a function 
on the set or semigroup generating the ortholattice. 

3. The representation of ortholattices by collections of sets could pro- 
vide "fuzzying" of the reasonings without introducing new essences 
like "fuzzy lattices." 

4. It may be a step toward describing varying topology, which can be 
very useful in quantizing gravity (Zapatrin, 1991). 
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